为叙述清晰,先来考虑非模糊聚类问题,每个样本只属于一个聚类。此时,可以设置聚类的准则为各类的类内平方和最小,类内平方和是各类内数据与其中心的距离平方和。显然越小,这个中心与分类结果越合理。在这一个准则下,可以推导辩凯出来 HCM 也就是k均值聚类,它是硬聚类,也可以看做硬的FCM。FCM的思路和它是基本一致的,也烂灶裤是一各类的“类内平方和”加到一起最小维标准的,但是这个“类内平方和”比HCM的稍微好了一点,它在每个数据与中心之间的距离之前成了一个权,这个权就是隶属度,显然这么做更加合理,隶属度小的距离其的作用就被抑制了,FCM的这个准则,通常又叫做“加权误差平方和最小化准则”,前面的HCM当然就是“误差平方和饥简最小化准则”了。
标签:FCM,聚类,思想
版权声明:文章由 问百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbaishu.com/answer/61442.html