逐差法是一种常用的数据处理方法。
逐差陆肆法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等间隔相减后取其逐差平均值得到的结果。
其优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或数据的分布规律,及时纠正或及时总结数据规律。它也是物理实验中处理数据常用的一种方法。
逐差法应用实例
在高中物理“求匀变速直线运动物体的加速度”实验中分析纸带。
运用公式△X=at^2;
X3-X1=X4-X2=Xm-Xm-2
当时间间隔T相等时,假设测得 X1,X2,X3,X4 四段乎态距离,那么加速度:
a=【(X4-X2)+(X3-X1)】/2×2T2。
逐差法(辗转相除法、更相减损术)求最大公约数:
两个正整数,以其中较大数减去较小数,并以差值取代原较大数,早顷轿重复步骤直至所剩两数值相等,即为所求两数的最大公约数。
例如:
259,111 ==>259-111=148
148,111 ==>148-111=37
111,37 ==>111- 37=74
74 ,37 ==> 74- 37=37
37 ,37 ==> 259与111的最大公约数为37
标签:逐差法