定理:f为(a,b)的凸函数,则其左右导数f'{-},f'{+} 存在,且 1.f'{-},f'{+}递减. 2.f'{-}(c)≥f'{+}(c) 3.c,d∈(a,b),则 f'{+}(c)≥[f(d)-f(c)]/[d-c]≥f'{-}(d) 1. 由于f'{-},f'{+}递减. 只需猛谨研究 In=(d-c)/n∑{0≤k≤n-1}f'{+}(c+k(d-c)/n)和 Jn=(d-c)/n∑{0≤k≤n-1}f'{-}(c+k(d-c)/n)的极限. 2.In≤Jn.(定理的2.) 3.由定理的3.得 In≥[(d-c)/n]* ∑{0≤k≤n-1}[f(c+(k+1)(d-c)/n)-f(c+k(d-c)/n)]/[(d-c)/n]= =f(d)-f(c) 4.由定理的3.得 Jn≤[(d-c)/n]f'{-}(c)+[(d-c)/n]* ∑{1≤手笑k≤n-1}[f(c+k(d-c)/n)-f(c+(k-1)(d-c)/n)]/[(d-c)/n]= =[(d-c)/n]f'{-}(c)+f(d-(d-c)/n)-f(c) 5.由f的连续性得, Lim{n→∞}{[(d-c)/n]f'{-}(c)+f(d-(d-c)/n)-f(c)}= =f(d)-f(c) 所以 Lim{n→∞}In=Lim{n→∞}Jn=f(d)-f(c) ==>f'{-},f'{+}黎曼枝薯基可积,且 ∫{c→d}f'{-}(x)dx=∫{c→d}f'{+}(x)dx=f(d)-f(c).
标签:黎曼可,高分,求助