卡特兰数 Catalan数 中文:卡特兰数 原理: 令h(1)=1,catalan数满足递归式: h(n)= h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1) (其中n>历行=2) 另类递归式: h(n)=((4*n-2)/(n+1))*h(n-1); 该递推关系的解为: h(n)=C(2n,n)/(n+1) (n=1,2,3,...) 我并不关心其解是怎么求出来的,我只想知道怎么用catalan数分析问题。 我总结了一下,最典型的四类应用:(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了) 1.括号化问题。 矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种) 2.出栈次序问题。 一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列? 类似:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元基弯者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈) 3.将多边行划分为三角形问题。 将一个凸多边形区域分成三角形区域的方法数? 类肢锋哗似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她 从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路? 类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数? 4.给顶节点组成二叉树的问题。 给定N个节点,能构成多少种不同的二叉树? (能构成h(N)个)
标签:卡特兰