当前位置:问百书>百科知识>如图,在Rt△ABC中,∠B=90°,AB=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.

如图,在Rt△ABC中,∠B=90°,AB=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.

2023-06-23 05:44:58 编辑:join 浏览量:596

如图,在Rt△ABC中,∠B=90°,AB=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.

标签:AB,从点,向点

版权声明:文章由 问百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbaishu.com/article/254079.html
热门文章
二维码