解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)四边形AEFD能够成为菱形.理由如下:∵∠B=90°,∠C=30°,∴AC=2AB=10.由勾股定理得,BC=5,∴AB=5,AC=10.∴AD=AC-DC=10-2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10-2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10-2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10-2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.
标签:AB,从点,向点