y'' - 2y' + 5y = 0, 设y = e^[f(x)],则 y' = e^[f(x)]*f'(x), y''= e^[f(x)]*[f'(x)]^2 + e^[f(x)]*f''(x). 0 = y'' - 2y' + 5y = e^[f(x)]*[f'(x)]^2 + e^[f(x)]*f''(x) - 2e^[f(x)]*f'(x) + 5e^[f(x)], 0 = [f'(x)]^2 + f''(x) - 2f'(x) + 5, 当f(x) = ax + b, a,b是常数时。 f'世谨'(x) = 0, f'(x) = a. 0 = a^2 - 2a + 5. 2^2 - 4*5 = -16 < 0.(2^2-4*5)^(1/2)=4i. a = [2 + 4i]/2 = 1 + 2i或a = [2-4i]/2 = 1 - 2i. y = e^[f(x)] = e^[ax+b] = e^[(1+2i)x + b] = e^[x+b]*e^(2ix) 或 y = e^[f(x)] = e^[ax+b] = e^[(1-2i)x + b] = e^[x+b]*e^(-2ix) 因2个解都满足微分方程。所以,微分方程的实函数解为, y = e^[x+b]*e^(2ix) + e^[x+b]*e^(-2ix) = e^[x+b][e^(2ix)+e^(-2ix)] = 2e^[x+b][cos(2x)] 或 y = e^[x+b]*e^(2ix) - e^[x+b]*e^(-2ix) = e^[x+b][e^(2ix)-e^(-2ix)] = 2e^[x+b][sin(2x)] 微分方程的实函数的通解为, y = 2c1e^[x+b][cos(2x)] + 2c2e^[x+b][sin(2x)] = e^x[2c1e^bcos(2x) + 2c2e^bsin(2x)]其中,c1,c2 是任意常数。记 C1 = 2c1e^b, C2 = 2c2e^b, 有 y = e^x[C1cos(2x) + C2sin(2x)] C1,C2为任意常数。这个,可能就是特征方程无实数根时,通解的由来吧~~【俺记忆力很差,公式都记不住,全孝返州靠傻推。。 这样的坏处是费时,好处是,自己推1遍,来龙去脉就清楚1些了。不知道,俺的傻推过程巧蔽对你的疑问有点帮助没~~】
标签:通解,齐次,二阶