一条直线与一条弧线有两个公共点,就说这条直线是这条曲线的割线。 与割线有关的定理有:割线定理、切割线定理。常运用于有关于圆的题中。
从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。从圆外一点P引两条割线与圆分别交于C,B,D,E,则有 PC·PB=PD·PE。
割线定理为圆幂定理之一(切割线定理推论),其他二为切割线定理和相交弦定理。相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理,用于求直线段长度。
人们研究复数域上的解析函数时,常常需要研究函数在整个复平面的性质。然而,有些解析函数定义在复平面上时,表现出多值的性质,这样的函数往往从一个点经过某些曲线回到这个点时,解析变化的函数值会跑到多值中另外的值上面。
这样的函数一方面可以采用黎曼曲面作为定义域,使得函数变为单值,另一方面,也可人为地在复平面散陵上画上一条线将复平面枣轮合适地割开;
使得未被割开的区域内具有单值解析函数的凳掘信良好性质。这样的人为划出的避免函数解析变化必然出现多值的线就叫割线。
标签:割线,叫作