对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积 Sek=Scd=Sab由开普勒第二定律引出的推论。 设行星1和行星2运行轨道的半径分别为R1和R2,当R1小于R2 时则有 (1)行星1的线速度大于行星2的线速度; (2)行星1的角速度大正链御于行星2的角速度; (3)行星1的加速度大于行星2的加速度 ; (4)行星1的运行周期小于行星2的运行周期 ; (5)在相同的时间内,行星1的运行路程大于行星2的运行路程 ; (6)在相同的时间内,行星1扫过的角度大于行星2扫过的角度。 行星在椭圆轨道运动时,极径 (又称向径R)所扫过面积与经过的时间成正比,即掠面速度守恒,唤老亦即举岩矢积守恒,又称动量矩(角动量)守恒。天体运动若每走一步的时间都相等,则向径所扫过的面积也相等,即面速度不变而形状变化。矢积面速度守恒,天体引力常数与最小曲率半径积的平方根。天体速度(VS)*极径(R)*两矢夹角的正弦sin(α)= (GML0)^1/2 = 常数(J0)。J0 = (GML0)1/2 = L0(GM/ L0)1/2 = L0·Vc = a(1-e2)·VC = R·VS·sinα= VS·R·cosβ
标签:开普勒,定律,第二