柯西中值定理如果函数f(x)及F(x)满足: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)内可导; (3)对任一x∈(a,b),F'(x)≠0, 那么在(a,b)内至少有一点ζ,使等式 [f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。 柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积圆唯分严格证明了带余项的泰勒公歼慎式,还用橘改培微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。
标签:柯西,具体内容,定理
版权声明:文章由 问百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbaishu.com/life/69960.html