当前位置:问百书>百科问答>什么是积分上限函数的导数公式

什么是积分上限函数的导数公式

2023-03-29 19:56:19 编辑:join 浏览量:654

什么是积分上限函数的导数公式

[∫[0,x] f(t)dt]'=f(x)

即:变动上限积分对变动上限的氏衡导数,裂核知等于将变动上限带入被积函数。

例:

F(x)=∫[0,x] sint/t dt 尽管 sint/t 的原函数 F(x) 无法用初等函数表示,但F(x)的导数却可以根据【变动上限积分求导法则】算出:

[F(x)]'=[∫[0,x] sint/t dt ]'=sinx/x

一般形式的【变动上限积分求导法则】为:

【∫[φ(x) ,ψ(x)] f(t)dt】' = f(φ(x))φ'(x)-f(ψ(x))ψ'(x)

设函数y=f(x) 在区间[a,b]上可积,对任意x∈[a,b],y=f(x)在[a,x] 上可积,且它的值与x构成一种对应关系(如概述中的图片所示),称Φ(x)为变上限的定积分函数。

扩展资料:

如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是肆消没有直观几何意义的抽象空间。

定义某些特殊的函数:在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。然而有时也会因为教学的原因造成定义上的差别。最常见的积分定义是黎曼积分和勒贝格积分。

参考资料来源:百度百科——积分上限函数

标签:导数,积分,公式

版权声明:文章由 问百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbaishu.com/answer/69275.html
热门文章
二维码