当前位置:问百书>生活百科>《倒数的认识》教学设计

《倒数的认识》教学设计

2024-06-03 01:46:38 编辑:join 浏览量:559

《倒数的认识》教学设计

作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么问题来了,教学设计应该怎么写?以下是小编帮大家整理的《倒数的认识》教学设计,仅供参考,希望能够帮助到大家。

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

教学过程设计

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于

教学目的:

1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。

2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。

教学重点:求一个数的倒数的方法。

教学难点:理解倒数的意义,掌握求一个数的倒数的方法。

教学准备:教学光盘

课前研究:自学课本P50:

(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。

(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?

(3)0有倒数吗?为什么?

教学过程:

一、作业错例分析。

二、学习分数的倒数:

1.出示例7

学生在自备本上完成,指名核对。

教师板书: ×=1× =1× =1

2.你能模仿着再举几个例子吗?

学生回答,教师板书。

3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)

和 互为倒数,也可以说的倒数是 ,的倒数是。

让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?

4.你能分别找出和的倒数吗?

学生同桌讨论找法,指名交流。

5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?

指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。

6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。

三、学习整数的倒数:

1.电脑出示:5的倒数是多少?1的倒数呢?

学生跟自己的同桌说一说,再指名交流。

方法一:求5的倒数时,可以先把5看作,所以它的倒数是;

方法二:想5×( )=1,再得出结果。

2.那1的倒数是多少?(1)

3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)

4. 分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?

0.25 0.1 的倒数是多少?如何求的?

5.练一练 示范写 的倒数: 的倒数是 ,明确不能写成 =。

学生独立完成,集体核对。

四、巩固练习:

1.练习十第1题

学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法

2.练习十第2题

学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。

3.练习十第3题

学生独立填空后集体订正。

4.练习十第4题

写出每组数的倒数。说说有什么发现?

第1组中都是真分数,倒数都是大于1的假分数。

第2组中都是大于1的假分数,倒数都是真分数。

第3组中都是一个分数的分数单位,倒数都是整数。

第4组中都是非0的自然数,倒数都是几分之一。

5.练习十第5题:

学生独立完成。说说怎样求正方体的表面积和体积。

6.练习十第6题

学生独立列式解答后,辨析。

两题中分数的不同意义:

第一题中的表示两个数量间的倍比关系,要用乘法计算。

第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。

7.思考题

学生小组讨论,指名交流。

按钢管的长度分三种情况考虑:

(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;

(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;

(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。

五、课堂总结:

今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:,那么我们就说是的倒数,反过来(引导学生说)

是的倒数,也就是说和互为倒数。

和存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:①什么是互为倒数?

怎样理解这句话?(举例说明)

(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)

②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

3.求一个数的倒数

教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

(能不能写成,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

②深化

你会求小数的倒数吗?(学生试做)

教材分析:

这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

设计理念:

本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

教学目标:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

能力目标:

培养学生观察、归纳、猜想、推理和概括的能力。

情感目标:

提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

教学重点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学难点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学过程:

一、课前谈话突破难点

1、谈话——蕴含“两个”,突破“互为”

师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

二、导入揭题,引导质疑

师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

预设:什么是倒数?怎样求倒数?……

这节课一起来探究这些问题?

三、创设活动情景,理解概念——“倒数是什么”

师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

1、在分类中理解“是什么”

①5/8×8/5②0。25×4③3/4+1/4

④1。6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

计算后你有什么发现?

师:如果请你将这六个算式分成两类,你准备怎么分?

(学生汇报:乘积是1。)[适当处板书:乘积是1]

归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

师:这三个算式有什么共同的特征吗?

预设:乘积是1。

2、举例感悟“怎么做”

师:你还能举出这样的例子吗?

还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

5/8倒数是8/5,8/5倒数是5/8。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

②0。25×4这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

⑤13/7×7/13

3、在思辨中深入理解

师:能说3/4和1/4互为倒数吗?为什么?

师:能说3/2、6/5和5/9互为倒数吗?为什么?

四、运用概念,探究方法——“怎样求倒数”

过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?

(投影,出示例2)

1、求下面各数的倒数

3/5267/20。610。250

学生尝试。

回报交流。

师:这组数中,你最喜欢求哪些数的倒数?为什么?

预设:

生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

师:这组数中,你最不喜欢哪个数的倒数?

预设:

生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

师:那你是怎样求26的倒数的呢?

你是怎样求一个小数的倒数的呢?

归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的'倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

2、强调书写格式

师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是()(2)9/7的倒数是()

2/5的倒数是()10/3的倒数是()

4/7的倒数是()6/5的倒数是()

(3)1/3的倒数是()(4)3的倒数是()

1/10的倒数是()9的倒数是(

nbsp;1/13的倒数是()14的倒数是()

由学生说出各数的倒数。

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

预设:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。

3、填空:

7×()=15/2×()=()×0。25=0。17×()=1

教学目标:

1、 使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

2、 培养学生观察、归纳、推理和概括的能力。

教学过程

一、创设活动情景,引入概念

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

让学生读一读:“倒数”。

出示倒数的意义:乘积是1的两个数互为倒数。

二、探究讨论,深入理解

让学生说说对倒数意义的理解。

提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

判断下面的句子错在哪里?应该怎样叙述。

因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

三、运用概念,探讨方法

出示例2,找一找哪两个数互为倒数?

汇报找的结果,并说说怎样找的?

1、 看两个分数的乘积是不是1;

2、 看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

通过具体实例总结归纳找倒数的方法。

(1)找分数的倒数:交换分子与分母的位置。

例:

(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

例:

四、出示特例,深入理解

看一看,例2中的哪些数据没有找到倒数?(1,0)

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、 关于1的倒数。

因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

也可以这样推导:

1的倒数是1。

2、 关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

也可以这样推导:

分母不能为0,所以0没有倒数。

五、巩固练习

1、 完成“做一做”。先独立做,再全班交流。

2、 练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、 同桌进行互说倒数活动(练习六第2题)。

六、总结

今天学习了什么?

什么叫倒数?怎样找出一个数的倒数?

教材分析:

教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:知道倒数的意义和会求一个数的倒数

教学难点:1、0的倒数的求法。

教具准备:课件

教学过程:

一、课前谈话:

师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

生:好!

师:那你想怎样表述我们的关系?

生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。

二、揭示倒数的意义

师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??

师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

生:(齐)能!

师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

准备好了吗?开始??

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。 )

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个

出示例7

师:那请你们来帮帮忙,找出乘积是1的两个数。

(学生个别回答)

师:你们找的这些与之前写的所有算式都有怎样的共同点?

生:乘积都是1。

师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。

师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】

师:3/8和8/3互为倒数!我们还可以怎么说呢。

生:3/8的倒数是8/3;8/3的倒数是3/8。

师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

师:2/5和5/2的积是1,我们就说??(生齐说)

师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

探索求一个倒数的方法

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

师:根据这一特点你能写出一个数的倒数吗?

生:能

师:试一试!

师在黑板上出示3/5 7/2 ,写出它们的倒数。

师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

生:把5看成是分母是1的分数,再把分子分母调换位置。

求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

三、 分数倒数。 倒数。 假分数

师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

0的倒数呢?

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1 的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。 )

四、巩固练习

1、打开书,阅读课本P34,把你认为重要的划起来。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(4/11=11/4)

生:不可以!

师:为什么?

生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

3、小游戏:同桌互相出一题,对方说出答案。

4、先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是( ) (2)9/7的倒数是( )

2/5的倒数是( )10/3的倒数是( )

4/7的倒数是( ) 6/5的倒数是( )

(3)1/3的倒数是( ) (4)3的倒数是( )

1/10的倒数是( )9的倒数是( )

1/13的倒数是( )14的倒数是( )

由学生说出各数的倒数。然后

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

4、填空:

7×( )=15/2×( )=( )×3又2/3=0.17×( )=1

五、课堂小结

1、小结:今天我们学习了什么???

2、学了倒数有什么用呢?

大家课后可去思考一下。

板书设计

倒数的认识

乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

(0.1=1/10) (5=5/1) (1又1/8=9/8)

求小数的倒数的方法: 求带分数的倒数的方法:带分数

分数假分数 倒数。 倒数。

标签:倒数,教学,认识

版权声明:文章由 问百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbaishu.com/life/411813.html
热门文章
二维码